Google Cloud launches Deep Learning Containers in beta

Google Platform (GCP) today launched Deep Containers, environments optimized for deploying and testing applications and services that utilize machine . GCP Deep Learning Containers in beta works in and on-premise, making it possible to develop or prototype locally or in the cloud.

Amazon introduced AWS Deep Learning Containers with Docker image support in March.

Google plans for its Deep Learning Containers to “reach parity with all Deep Learning virtual machine types” in the future, according to a blog post sharing the news. The new service includes preconfigured Jupyter and Google Kubernetes Engine (GKE) clusters and launches with machine learning acceleration available from  Nvidia GPUs, Intel CPUs, and other hardware. Nvidia GPU use with Deep Learning Containers requires use of nvidia-docker.

Deep Learning Containers also come with access to a number of packages and tools such as Nvidia's CUDA, cuDNN, and NCCL.

GCP Deep Learning Containers launches with support for machine learning frameworks like PyTorch, TensorFlow 2.0 and TensorFlow 1.13.

Deep Learning Containers also works with GCP AI Platform for data scientists to collaborate on AI model development first introduced by Google at the Cloud Next conference in April.

You might also like

Comments are closed.

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. AcceptRead More